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Laminar di�usion of suspended particulate matter using
a two phase �ow model
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SUMMARY

The present paper envisages laminar mixing of a two-dimensional jet of particulate suspension in an
incompressible carrier �uid with a free stream in direction of the jet axis. Finite di�erence technique has
been employed for �nding out solution of governing equations. It is found that the di�usion parameter
�, the ratio of particle di�usion coe�cient and kinematic viscosity of the carrier �uid, have signi�cant
in�uence on the concentration of particles. A large value of � has the e�ect in increasing the perturbation
velocity up and perturbation density �p. It is observed that the volume fraction ’, has no signi�cant
e�ect on perturbation velocity u and up but has profound e�ect on perturbation velocity v and vp. It
is also found that the particle phase as well as the carrier �uid velocity attain free stream value for
the large �, the modi�ed x-co-ordinate. Further the magnitude of the perturbation quantities u; up; v; vp
decreases as � increases i.e. at far away from the nozzle exit. Copyright ? 2002 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Now-a-days, when increasing environmental pollution is a world-wide problem, the need
of controlling the pollution is vital. Modelling air and water pollution reveals awareness and
serves as an important tool for environmental protection and to abate, to control and to prevent
degradation. A good model is suitable for various temporal and spatial scales because it is
physically realistic, accurate and universal. Up till now closed form of analytical modellings
available are (1) Gaussian plume model, (2) Gaussian pu� model, (3) �rst-order closure
model, (4) Eulerian Grid model, (5) Lagrangian trajectory model, (6) particle-in cell model,
and (7) Random walk trajectory particle model. In the above-mentioned models, dispersions of
pollutant through the ambient �uid are studied. Soo [1], Marble [2], Singleton [3], Sa�man [4],

∗ Correspondence to: T. C. Panda, Pl Indo-US Major Project, Department of Mathematics, Berhampur University,
Berhampur-760007, Orissa, India.

† E-mail: tc panda@yahoo.com

Contract=grant sponsor: O�ce of Naval Research=Naval Research Lab, Washington, DC, USA; contract=grant
number: N00014-97-1-0905

Received January 2000
Copyright ? 2002 John Wiley & Sons, Ltd. Revised October 2001



842 T. C. PANDA, S. K. MISHRA AND K. Ch. PANDA

Batchelor [14] and Hinze [15] have studied various aspects of two-phase �ow by neglecting
volume fraction and di�usion of particles through carrier �uid. Outterman [5] has studied
particle migration of laminar mixing of a suspension with a clear �uid where the volume
fraction and di�usion of particles have been neglected. Ryhming [6] has decided upon a
simplest, yet relevant model of a two-phase jet �ow where Stoke’s drag force and particle
di�usion through the �uid phase are taken into consideration. Dutta and Mishra [7] have
shown the e�ect of transverse force on laminar mixing of a two-dimensional jet of particulate
suspension with a moving freestream on the basis of the model proposed by Ryhming [6].
Dutta and Das [8] have studied the laminar jet mixing of a �uid with SPM issuing from
a circular ori�ce. The di�usion of pollutants in the form of SPM of di�erent sizes, and
density much higher than the carrier �uid, can very well be studied by considering the model
suggested by Rhyming [6]. In the present study the e�ect of lift-force due to Brownian motion
and volume fraction of SPM are considered in addition to study the e�ect of drag force and
particle di�usion on the laminar mixing of a two-dimensional jet with the moving free stream
in the direction of the jet axis.

2. MATHEMATICAL FORMULATION OF THE MODEL

In the available mathematical analysis of �ows with SPM the volume fraction (the volume
occupied by the SPM) is neglected when,

(i) the particles represent less than one-half of the mass of the mixture.
(ii) density of the particle material is more than a thousand times larger than the gas den-

sity. In such cases the volume fraction is of order 104 and the assumption of negligible
volume fraction is well justi�ed. But at the high gas densities (high pressure) and at
high particle mass fraction, the volume fraction of the particles, will be su�ciently
large so that the volume fraction should not have been neglected as suggested by
Rudinger [9].

The present problem under study is of boundary layer type. In the boundary layer the �uid
decelerates from its free stream velocity to zero velocity at the centre line, but since the
density of the particle material is much greater than the �uid density, the particles cannot
accommodate this rapid deceleration but tend to slip through the �uid as they decelerate.
Because of the particle slip velocities, there will be a volume force acting on the �uid

and an equal opposite force acting on the particle phase. This volume force is assumed to
have the form of the Stoke’s drag law. For large particle Reynolds number, this assumption
is erroneous, so it will be assumed that the particle Reynolds number is of order unity. Every
where this restriction is not met, the result still will be qualitatively correct and quantitatively
reasonable.
Therefore F̃p = np6��a( �vp− �v). Now in the boundary layer the particles �nd themselves in a

shear �ow which causes them to rotate, thus giving rise to a lift force acting on the particles
in addition to the Stokes drag forces. Unfortunately the problem of the sphere in a shear �ow
has not been done. In two dimensions∣∣∣∣∣ F̃p1F̃p

∣∣∣∣∣ = np�a
3�12((@v=@x) + (@u=@y))vp − v

np6��a|vp − v|
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Figure 1. Schematic view of the two phases �ow model.
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where u; v= x and y component of Ṽ (Figure 1).
L is some characteristic length. Also the non-dimensional quantities are x∗= x=L; Re =

�u∞L=�; y∗=y=L
√
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√
Re v=u∞. Then if (�u∞a=�)(a=L) is small enough,

we can neglect lift force compared to Stokes drag forces.
But (�u∞a=�)(a=L)= (�u∞L=�)(a2=L2)=Re(a2=L), and cannot be always small enough and

lift force cannot be neglected.
Taking the x-axis to be along the axis of the jet, the y-axis perpendicular to it and the

origin at the nozzle exit and at the mid-point of the nozzle width, the governing equations of
two-dimensional jet �ow studied by, Rhyming [6], and Datta and Mishra [7] are
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Now introducing the non-dimensional variables

�x=
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L
; �y=

y
L
; �u=

u
U
; �v=

v
U
; �up =

up
U
; �vp =

vp
U
; ��p =

�p
�p0

Equations (1–5) become
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where

k1 =
1
Re
; k2 =

1
Rep
; Rep =

UL
�p

Considering the �ow from the ori�ce under full expansion, we can assume that, (i) the
pressure in the mixing region to be approximately constant and the pressure at the exit of
the nozzle to be equal to that of the surrounding stream, and (ii) the velocity components
in the jet is only slightly di�erent from that of the surrounding stream. Hence after dropping
bars we can write, u= u0 + u1; v= v1; up = up0 + up1; vp = vp1; �p =�p1. Since the particle
slips, u0; up0 should not be equal, u1; up1; v1; vp1; �p1, are here perturbation quantities and
u1�u0; up1�up0; u1≈ v1; up1≈ vp1. Particle concentration is throughout taken as a perturbation
quantity only because the bulk concentration of particles in the ensuing �uid is taken to be
small.
From the above consideration, Equations (6)–(10) can be written in the non-dimensional

linearized form, after dropping the su�x 1, as
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(15)

where 	=�a3�=2mp is the lift force parameter.
Equations (11)–(15) have to be solved for the following entry and boundary conditions:

uy(x; 0) = 0; u(x;∞)=0 (16)

upy(x; 0) = 0; up(x;∞)=0 (17)

�py(x; 0) = 0; �p(x;∞)=0 (18)

v(0; y) = 0; v(x; 0)=0

vp(0; y) = 0; vp(x; 0)=0

}
(19)

@up
@y
(x;∞) = 0 (20)

Now putting �= k1x, the governing Equations (11)–(15) become
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(25)

where �= k2=k1; k=1=�k1.

3. METHOD OF SOLUTION

Equations (21)–(25) have been solved by the �nite di�erence method using implicit schemes,
of the Crank–Nicholson and the discretized version of the PDE (21)–(25) can be
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presented as

−Ai�pi−1; n+1 + Bi�pi ; n+1 − Ci�pi+1; n+1 = Di

−Aiui−1; n+1 +Qiui; n+1 − Ciui+1; n+1 = Si

−Aiupi−1; n+1 +Qpiupi; n+1 − Ciupi+1; n+1 = Spi

−Aivpi−1; n+1 + Rivpi; n+1 − Civp; n+1 = Hi

(26)
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The set of linear Di�erence equations is solved with prescribed boundary condition
(16)–(20) giving the perturbed variables u; up; v; vp, and �p at (x +�x). Equations (26) are
solved recursively such that the successive values of u; up; v; vp, and �p are less than 10−4. With
improved values of the dependent variables, Equations (26) are integrated again. The process
is repeated till the di�erence in the values of the dependent variables in two consecutive
operations are less than 10−4 and then the integration proceeds to next step. In downstream
of the mixing region, when the di�erence in u; up; v; vp, and �p at N th and (N − 1)th grid
points exceed certain prescribed value, the range of integration in y-direction is increased so
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Figure 2. Density pro�le for the particle against y; k =1:0.

Figure 3. Perturbation of magnitude for the �uid velocity component u on the jet axis
for k =1:0; 	=0:000003, against y.

as to get smooth variation of the dependent variables. This procedure guarantees convergence,
compatibility and stability criteria of the numerical method used.

4. DISCUSSION OF THE RESULT AND CONCLUSION

Some examples of typical results obtained in this study are exhibited in Figures 2–13. The
characteristic features of gas–particulate �ow in the boundary layer are presented. The fol-
lowing values of the parameters are used basing on the assumptions made in the formulation
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Figure 4. Perturbation of magnitude for the �uid velocity component v on the jet axis
for k =1:0; 	=0:000003, against y.

Figure 5. Perturbation of magnitude for the particle velocity component up on the jet
axis for k =1:0; 	=0:000003, against y.

of the present analysis:

u=60:96 m=s
�=0:9752 kg=m3

�=1:5415× 10−6 kg=m3
��p = 801:0; 1602:0; 2403:0; 8010:0 kg=m3

�=0:01; 0:02; 0:03; 0:1
d=50�; 100�; 250�
L=0:3048 m

The u-distribution depends on the parameters �; �; ’; 	 and k. The relative in�uence of
these parameters on u as a function of y for certain �xed �-values have been demonstrated in
Figures 3 and 10. The �-values have been chosen in such a manner that if should be possible
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Figure 6. Perturbation of magnitude for the particle velocity component vp on the jet
axis for k =1:0; 	=0:000003, against y.

Figure 7. Density pro�le for the particle component �p against �; k =1:0.

to observe the in�uence of the above parameters on u. Hence in Figure 10 �; �; ’; 	, and k
are held constant and given the arbitrary values �=0:01; �=0:01; 	=0:000003 and k=1,
respectively, where as ’ gets varied in a series of values 0.001, 0.01, 0.04, 0.08, and 0.10.
For the whole series of non-dimensional quantities u0 = 1:0; up0 = 0:95, it is observed that the
variation in the perturbation magnitude for the �uid velocity component u is not signi�cant.
In Figure 3, the perturbation magnitude for the �uid velocity component u on the jet axis
decreases towards the downstream of the mixing region.
The Figures 5, 8 and 12 depict the shape and development of perturbation particle velocity

component up. The up distribution contains �ve parameters �; �; ’; 	 and k. From Figure 5,
it can be observed that the magnitude of perturbation particle velocity component increases
initially then starts decreasing towards the trailing edge of the mixing region. From Figures 8

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:841–853
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Figure 8. Perturbation of magnitude for the particle velocity component up on the jet
axis for k =1:0; 	=0:000003, against y.

Figure 9. Perturbation of magnitude for the particle velocity component vp on the
jet axis for k =1:0; 	=0:000003, against �.

and 12 it is observed that both � and ’ have profound in�uence in the shape and development
of the up. As � increases, the magnitude of up increases and as ’ increases up decreases
initially, then increases with ’. For ’=0:1 the particles overshoot the local carrier jet speed.
The density distribution �p in the mixing region can be visualized from Figures 2 and 7.

From Figure 2 it is observed that the distribution of particles becomes thin towards the
downstream of the mixing region. The increase of � helps in rapid migration of the particles,
thereby thinning the concentration. The fact that the increase of up with the increase of � and
’ supports the above physical phenomenon.
The incorporation of di�usion and volume fraction in the constitutive equation helps in

rapid migration of the particles resulting in thinning of the pollutant concentration. No co-
ordination and consulted e�orts have been done so far by previous authors and no su�cient
literature is documented to that e�ect.
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Figure 10. Perturbation of magnitude for the �uid velocity component u on the jet
axis for k =1:0; 	=0:000003, against �.

Figure 11. Perturbation of magnitude for the �uid velocity component v on the jet
axis for k =1:0; 	=0:000003, against �.

NOMENCLATURE

a radius of each particle
Dp binary di�usion coe�cient
F̃p Stokes drag force, F̃p = np6��a(v− vp)
F̃p1 Lift force, F̃p = np�a3�

(∇× Ṽ )
2

× (Ṽp − Ṽ )
L half-width of the jet
K1 inverse of �uid Reynolds number (=1=Re = �=UL)
K2 inverse of particle Reynolds number (�p=UL)
Np mass of the particle
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Figure 12. Perturbation of magnitude for the particle velocity component up on the
jet axis for k =1:0; 	=0:000003, against �.

Figure 13. Perturbation of magnitude for the particle velocity component vp on the
jet axis for k =1:0; 	=0:000003, against �.

np number of particles per unit volume of the mixture
U free stream velocity of clear �uid
(u0; up0) the �uid and particle velocity at the exit of the nozzle
( �u; �v), (up; vp) non-dimensional velocity components of �uid and particle

phase, respectively
ṽ(u; v); ṽp(up; vp) �uid and particle phase velocities
(x; y) space co-ordinates along and the axis of the jet perpendicular to it
( �x; �y) dimensionless co-ordinates
� concentration parameter = (�p=p)
	 lift force parameter =�a3�=2mp
� di�usion parameter = (vp=v)vp≈Dp
� non-dimensional length (= 
=L)
(�; �p) kinematics coe�cient of viscosity of �uid and particle phase

respectively
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(�; �p) density of �uid and particle phase, respectively
�s mass of particle material per unit volume of particle material
�p0 initial particle mass concentration in the jet
�p = (2=9)(�sa=�) the momentum equilibration time
� coe�cient of viscosity of �uid
’ volume fraction of dust particles
�p density of the particles in the free-stream

 momentum relaxation length (= �pU )
� modi�ed x-co-ordinate (=K1x)
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